
Variational Multiscale Modeling of Biomolecular Complexes

Kelin Xia1, Xin Feng2, Yiying Tong2, and Guo-wei Wei1,3

1Department of Mathematics, Michigan State University, MI 48824, USA
2Department of Computer Science and Engineering, Michigan State University, MI 48824, USA
3Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA

Introduction
Multiscale modeling is of paramount importance to the understanding of biomolecular structure,
function, dynamics and transport. Geometric modeling provides structural representations of
molecular data from the Protein Data Bank (PDB) and the Electron Microscopy Data Bank (EMDB).
Commonly used geometric models, such as molecular surface (MS), van der Waals surface, and
solvent accessible surface are ad hoc devision of solvent and solute regions and lead to troublesome
geometric singularities, as demonstrated in the figure below. At fundamental level, solvent and
solute electron densities overlap each other and there is no sharp solvent-solute interface.
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We discuss our variational multiscale models and associated geometric modeling of biomolecular
complexes, based on differential geometry of surfaces and geometric measure theory. Our models
give rise to singularity-free surface representation, curvature characterization, electrostatic
mapping, solvation energy and binding affinity analysis of biomolecules.

VariationalMultiscaleModels
Almost all the biological processes in a living cell occur in aqueous surroundings, because up to
65%-90% of human cell mass is water. In our multiscale solvation model, a total free energy
functional is constructed to include polar and nonpolar free energies.
I The free energy functional of the solvation process is,

Gtotal[S,Φ] =

∫ {
γ|∇S|+ pS + S

[
−
εm
2
|∇Φ|2 +Φ ρm

]
+(1 − S)

[
−
εs
2
|∇Φ|2 − kBT

∑
α

ρα0

(
e
−

qαΦ+Uα−µα0
kBT − 1

)]}
dr,

where γ is the surface tension, S is the hypersurface and can be viewed as a characteristic function
of the solute domain, p is the hydrodynamic pressure, and Uα denotes the solvent-solute
non-electrostatic interactions, such as the van der Waals interaction. HereΦ is the electrostatic
potential, εs and εm are the dielectric constants of the solvent and solute, respectively, ρm
represents the fixed charge density of the solute and kBT is the thermal energy. By applying the
variational principle to minimize the total solvation free energy with respect toΦ and S, two
equations are generated.

I The Generalized Poisson-Boltzmann Equation describes the electrostatic potential,
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where ρα0 denotes the bulk concentration, and µα0 is a relative reference chemical potential.
I The generalized Laplace-Beltrami equation governs the surface formation under potential

driven geometric flows,

∂S
∂t

= |∇S|
[
∇ ·
(
γ
∇S
|∇S|

)
+ V1

]
,

where the potential driven term V1 is given by
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The external potential term can be adjusted to take into consideration of other effects. For
instance, if we assume that the biomolecular system is far from equilibrium and account for the
chemical potential related energy in the free energy functional, we result in a potential driven
term of the form
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Our model can be easily modified to account for other physical interactions.

Surface and Electrostatic Analysis
The solution of the generalized Laplace-Beltrami equation gives rise to biomolecular surfaces of
controllable resolutions. These surfaces are free from geometric singularities. Their resolutions can
be tuned to avoid the local atomic fluctuation in the curvature analysis.
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The Generalized Poisson-Boltzmann equation is solved to obtain electrostatic potential, which
offers an indication of possible binding sites.
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EMD Data Preprocessing
The EMDB collects protein structural information from electron microscopy. The associated data
are in a volumetric format and usually suffer from low signal-to-noise rate (SNR). Therefore, the
noise reduction of EMDB data is mandatory. High order geometric flows, which can more
efficiently suppress the high-frequency components, are employed for EMDB data analysis. A
specific form of arbitrarily high order geometric PDEs is given by,
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where g(|∇∇2qS|) = 1 + |∇∇2qS|2 is the generalized Gram determinant. When q = 0, we arrive at a
generalized mean curvature flow.
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GeometricModeling— Meshing
The Lagrangian representation of protein surfaces derived from our variational multiscale models
can be used for volumetric meshing. The Delaunay triangulation algorithm is implemented.
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GeometricModeling— Curvature
The surfaces are characterized by using Gaussian, mean, minimal principal and maximal principal
curvatures, which indicate potential binding sites.
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Binding-Site Prediction
The product of minimal curvature and electrostatic potential indicates binding sites.
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Conclusion
Our variational multiscale modeling demonstrates a great promising for the geometric, physical,
and biological analysis of biomolecular complexes.
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