讲座题目:行列式表示法求解多项式系统问题
主 讲 人:Michiel Erik Hochstenbach教授
讲座时间:2019年10月24日10:00-11:00
讲座地点:理学院201会议室
欢迎有兴趣的师生前来聆听!
理学院
2019年10月23日
讲座内容简介:
Zeros of a polynomial, p(x)=0, are often determined by computing the eigenvalues of a companion matrix: a matrix A which satisfies det(A-xI)=p(x). In this talk we consider polynomial systems, in particular of 2 variables: p(x,y)=0, swdq(x,y)=0. We look for a determinantal representation for such a bivariate polynomial: matrices A, B, C such that det(A-xB-yC)=p(x,y). This means that we can compute the zeros of the system by solving a 2-parameter eigenvalue problem. This very fascinating approach, which already goes back to a theorem by Dixon in 1902, leads to fast solution approaches, as well as a multitude of interesting open research questions. This is mainly joint work with Bor Plestenjak (Ljubljana), and additionally several colleagues in algebra.
主讲人简介:
Michiel Erik Hochstenbach教授是世界百强名校荷兰埃因霍芬理工大学(Eindhoven University of Technology)数学与计算机科学系的教授,2003年博士毕业于世界顶尖公立研究型大学荷兰乌得勒支大学(Utrecht University),主要研究方向为科学计算,算法与软件开发,大数据,深度学习和模式识别等。在科学计算领域的重要期刊SIAM J. Matrix Anal. Appl.,Lin. Alg. Appl.,J. Comput. Appl. Math.,Num. Lin. Alg. Appl.,Electr. Trans. Num. Anal.等发表40余篇SCI学术论文,其论文多次获得国际级奖的第一名,现担任BIT Numerical Mathematics,Electr. Trans. Num. Anal.等期刊编委,并主持一项52万欧元的欧盟大数据项目。Hochstenbach教授是特征值问题中Jacobi-Davidson算法的早期研究学者之一,对该内容的后续研究起到了非常重要的意义。